A beginner’s guide to Java Persistence locking

Are you struggling with performance issues in your Spring, Jakarta EE, or Java EE application?

What if there were a tool that could automatically detect what caused performance issues in your JPA and Hibernate data access layer?

Wouldn’t it be awesome to have such a tool to watch your application and prevent performance issues during development, long before they affect production systems?

Well, Hypersistence Optimizer is that tool! And it works with Spring Boot, Spring Framework, Jakarta EE, Java EE, Quarkus, Micronaut, or Play Framework.

So, rather than fixing performance issues in your production system on a Saturday night, you are better off using Hypersistence Optimizer to help you prevent those issues so that you can spend your time on the things that you love!

Implicit locking

In concurrency theory, locking is used for protecting mutable shared data against hazardous data integrity anomalies. Because lock management is a very complex problem, most applications rely on their data provider implicit locking techniques.

Delegating the whole locking responsibility to the database system can both simplify application development and prevent concurrency issues, such as deadlocking. Deadlocks can still occur, but the database can detect and take safety measures (arbitrarily releasing one of the two competing locks).

Physical locks

Most database systems use shared (read) and exclusive (write) locks, attributed to specific locking elements (rows, tables). While physical locking is demanded by the SQL standard, the pessimistic approach might hinder scalability.

Modern databases have implemented lightweight locking techniques, such as MVCC.

The implicit database locking is hidden behind the transaction isolation level configuration. Each isolation level comes with a predefined locking scheme, aimed at preventing a certain set of data integrity anomalies.

READ COMMITTED uses query-level shared locks and exclusive locks for the current transaction modified data. REPEATABLE READ and SERIALIZABLE use transaction-level shared locks when reading and exclusive locks when writing.

Logical locks

If database locking is sufficient for batch processing systems, a multi-request web flow spans over several database transactions. For long conversations, a logical (optimistic) locking mechanism is much more appropriate.

Paired with a conversation-level repeatable read storage, optimistic locking can ensure data integrity without trading scalability.

JPA supports both optimistic locking and persistence context repeatable reads, making it ideal for implementing logical transactions.

Explicit locking

While implicit locking is probably the best choice for most applications concurrency control requirements, there might be times when you want a finer-grained locking strategy.

Most database systems support query-time exclusive locking directives, such as SELECT FOR UPDATE or SELECT FOR SHARE. We can, therefore, use lower level default isolation levels (READ COMMITTED), while requesting share or exclusive locks for specific transaction scenarios.

Most optimistic locking implementations verify modified data only, but JPA allows explicit optimistic locking as well.

JPA locking

As a database abstraction layer, JPA can benefit from the implicit locking mechanisms offered by the underlying RDBMS. For logical locking, JPA offers an optional automated entity version control mechanism as well.

JPA supports explicit locking for the following operations:

Explicit lock types

The LockModeType contains the following optimistic and pessimistic locking modes:

Lock Mode Type Description
NONE In the absence of explicit locking, the application will use implicit locking (optimistic or pessimistic)
OPTIMISTIC Always issues a version check upon transaction commit, therefore ensuring optimistic locking repeatable reads.
READ Same as OPTIMISTIC.
OPTIMISTIC_FORCE_INCREMENT Always increases the entity version (even when the entity doesn’t change) and issues a version check upon transaction commit, therefore ensuring optimistic locking repeatable reads.
WRITE Same as OPTIMISTIC_FORCE_INCREMENT.
PESSIMISTIC_READ A shared lock is acquired to prevent any other transaction from acquiring a PESSIMISTIC_WRITE lock.
PESSIMISTIC_WRITE An exclusive lock is acquired to prevent any other transaction from acquiring a PESSIMISTIC_READ or a PESSIMISTIC_WRITE lock.
PESSIMISTIC_FORCE_INCREMENT A database lock is acquired to prevent any other transaction from acquiring a PESSIMISTIC_READ or a PESSIMISTIC_WRITE lock and the entity version is incremented upon transaction commit.

Lock scope and timeouts

JPA 2.0 defined the javax.persistence.lock.scope property, taking one of the following values:

  • NORMAL

    Because object graphs can span to multiple tables, an explicit locking request might propagate to more than one table (e.g. joined inheritance, secondary tables).

    Because the entire entity associated row(s) are locked, many-to-one and one-to-one foreign keys will be locked as well but without locking the other side parent associations. This scope doesn’t propagate to children collections.

  • EXTENDED

    The explicit lock is propagated to element collections and junction tables, but it doesn’t lock the actual children entities. The lock is only useful for protecting against removing existing children, while permitting phantom reads or changes to the actual children entity states.

JPA 2.0 also introduced the javax.persistence.lock.timeout property, allowing us to configure the amount of time (milliseconds) a lock request will wait before throwing a PessimisticLockException.

Hibernate locking

Hibernate supports all JPA locking modes and some additional specific locking options. As with JPA, explicit locking can be configured for the following operations:

The LockModeConverter takes care of mapping JPA and Hibernate lock modes as follows:

Hibernate LockMode JPA LockModeType
NONE NONE
OPTIMISTIC
READ
OPTIMISTIC
OPTIMISTIC_FORCE_INCREMENT
WRITE
OPTIMISTIC_FORCE_INCREMENT
PESSIMISTIC_READ PESSIMISTIC_READ
PESSIMISTIC_WRITE
UPGRADE
UPGRADE_NOWAIT
UPGRADE_SKIPLOCKED
PESSIMISTIC_WRITE
PESSIMISTIC_FORCE_INCREMENT
FORCE
PESSIMISTIC_FORCE_INCREMENT

The UPGRADE and FORCE lock modes are deprecated in favor of PESSIMISTIC_WRITE.

UPGRADE_NOWAIT and UPGRADE_SKIPLOCKED use an Oracle-style select for update nowait or select for update skip locked syntax respectively.

If you enjoyed this article, I bet you are going to love my Book and Video Courses as well.

Lock scope and timeouts

Hibernate also defines scope and timeout locking options:

  • scope

    The lock scope allows explicit locking cascade to owned associations.

  • timeout

    A timeout interval may prevent a locking request from waiting indefinitely.

Transactions and Concurrency Control eBook

4 Comments on “A beginner’s guide to Java Persistence locking

  1. Hi,

    Could you please clarify what is difference between query level shared lock vs transaction level shared lock in “READ COMMITTED uses query-level shared locks … SERIALIZABLE use transaction-level shared locks ”

    Thanks

    • On PostgreSQL, a query-level shared lock that gets acquired is released only after transaction commit or rollback. If you are using Serializable, there is no shared lock acquired implicitly due to the MVCC mechanism.

      Oracle does not have explicit shared locks you could acquire explicitly.

      On SQL Server and MySQL, there is no difference between query-level shared locks and the implicit ones you get in Serializable.

      • Thank you for your response but I’m still confused. The way I understood is that Shared Locks/Exclusive Locks are both examples of Physical Locks and pessimistic approach to locking. MVCC is an alternative approach used by PostgreSQL that doesn’t use Physical Locks. Are you saying that PostgreSQL uses MVCC only for REPEATABLE_READ and SERIALIZABLE isolation level?

      • MVCC uses exclusive locks too. Every time a record is modified, the record is locked exclusively. Only shared locks are not needed by MVCC.

        PostgreSQL, like Oracle, uses MVCC for all isolation levels, so there is no need for shared locks.

        The topic is very complex, and if you want a detailed explanation about how various DBs implement concurrency control, then check out my High-Performance SQL video course.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.