MongoDB 2.6 is $out
Introduction MongoDB is evolving rapidly. The 2.2 version introduced the aggregation framework as an alternative to the Map-Reduce query model. Generating aggregated reports is a recurrent requirement for enterprise systems and MongoDB shines in this regard. If you’re new to it you might want to check this aggregation framework introduction or the performance tuning and the data modelling guides.
MongoDB and the fine art of data modeling
Introduction This is the third part of our MongoDB time series tutorial, and this post will emphasize the importance of data modeling. You might want to check the first part of this series, to get familiar with our virtual project requirements and the second part talking about common optimization techniques. When you first start using MongoDB, you’ll immediately notice it’s schema-less data model. But schema-less doesn’t mean skipping proper data modeling (satisfying your application business and performance requirements). As opposed to a SQL database, a NoSQL document model is more focused towards… Read More
A beginner’s guide to MongoDB performance turbocharging
Introduction This is the second part of our MongoDB time series tutorial, and this post will be dedicated to performance tuning. In my previous post, I introduced you into our virtual project requirements. In short, we have 50M time events, spanning from the 1st of January 2012 to the 1st of January 2013, with the following structure: We’d like to aggregate the minimum, the maximum, and the average value as well as the entries count for the following discrete time samples: all seconds in a minute all minutes in an hour all… Read More
MongoDB time series: Introducing the aggregation framework
In my previous posts I talked about batch importing and the out-of-the-box MongoDB performance. Meanwhile, MongoDB was awarded DBMS of the year 2013, so I therefore decided to offer a more thorough analyze of its real-life usage. Because a theory is better understood in a pragmatic context, I will first present you our virtual project requirements. Introduction Our virtual project has the following requirements: it must store valued time events represented as v=f(t) it must aggregate the minimum, maximum, average and count records by: seconds in a minute minutes in an hour… Read More
MongoDB Facts: Lightning fast aggregation
In my previous post, I demonstrated how fast you can insert 50 millions time-event entries with MongoDB. This time, we will make use of all that data to fuel our aggregation tests.